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Published estimates of methane emissions from atmospheric data
(top-down approaches) exceed those from source-based invento-
ries (bottom-up approaches), leading to conflicting claims about
the climate implications of fuel switching from coal or petroleum
to natural gas. Based on data from a coordinated campaign in the
Barnett Shale oil and gas-producing region of Texas, we find that
top-down and bottom-up estimates of both total and fossil methane
emissions agree within statistical confidence intervals (relative
differences are 10% for fossil methane and 0.1% for total
methane). We reduced uncertainty in top-down estimates by
using repeated mass balance measurements, as well as ethane
as a fingerprint for source attribution. Similarly, our bottom-up
estimate incorporates a more complete count of facilities than past
inventories, which omitted a significant number of major sources,
and more effectively accounts for the influence of large emission
sources using a statistical estimator that integrates observations
from multiple ground-based measurement datasets. Two percent
of oil and gas facilities in the Barnett accounts for half of methane
emissions at any given time, and high-emitting facilities appear to
be spatiotemporally variable. Measured oil and gas methane emis-
sions are 90% larger than estimates based on the US Environmental
Protection Agency’s Greenhouse Gas Inventory and correspond to
1.5% of natural gas production. This rate of methane loss increases
the 20-y climate impacts of natural gas consumed in the region by
roughly 50%.

methane emissions | oil and gas emissions | greenhouse gas footprint |
natural gas supply chain | Barnett Shale

Methane (CH4), the principal component of natural gas, is a
powerful greenhouse gas. Although natural gas emits less

carbon dioxide (CO2) per unit of energy than coal or oil when
burned, CH4 losses during the production, processing, transportation,
and use of natural gas reduce its climate advantage compared with
other fossil fuels. For example, if CH4 losses are large enough (e.g.,
∼3% of production), new natural gas power plants can cause greater
climate damage than new coal plants for decades or longer (∼1%
when comparing natural gas to diesel freight trucks) (1).
The lack of current data on CH4 emissions, magnified by intense

public concern over the broader environmental implications of
shale gas development, has stimulated significant research to
improve estimates of CH4 emissions (2–18). A recurring theme in
recent literature is that “top-down” (TD) approaches produce
estimates that are significantly higher than those from “bottom-
up” (BU) approaches. Concerns about available inventories and
divergent TD and BU estimates create confusion regarding policy
formulation and leave room for conflicting claims about the
greenhouse gas implications of increased use of natural gas.

TD approaches for estimating total CH4 emissions at the regional
or larger scale include airborne mass balance (2–4, 19), atmospheric
transport models (5, 6, 20–23), and enhancement ratios with well-
constrained pollutants (17, 18, 24, 25). Apportionment of TD CH4

emissions to oil and gas infrastructure and other fossil sources has
been accomplished using several approaches, including: subtracting
BU estimates of biogenic sources (3, 4), using isotope and hydro-
carbon ratios, and through inverse modeling (6). This apportion-
ment contributes to the uncertainty of TD estimates of fossil CH4

emissions. Regardless of the methods used, TD estimates of total as
well as oil and gas CH4 emissions regularly exceed BU estimates
based on emission inventories, which often rely on outdated emis-
sion factors (EFs), inadequate sampling (not representative of the
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Past studies reporting divergent estimates of methane emis-
sions from the natural gas supply chain have generated con-
flicting claims about the full greenhouse gas footprint of
natural gas. Top-down estimates based on large-scale atmo-
spheric sampling often exceed bottom-up estimates based on
source-based emission inventories. In this work, we reconcile
top-down and bottom-up methane emissions estimates in one
of the country’s major natural gas production basins using
easily replicable measurement and data integration tech-
niques. These convergent emissions estimates provide greater
confidence that we can accurately characterize the sources of
emissions, including the large impact that a small proportion of
high-emitters have on total emissions and determine the im-
plications for mitigation.
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population of sites), and inaccurate counts and location of sites,
facilities, and equipment (26) (SI Appendix, Fig. S1).
We examine these issues as they apply to the Barnett Shale re-

gion in north Texas, the first basin to see widespread use of hori-
zontal drilling and hydraulic fracturing and that, today, produces
7% of US marketed natural gas (see the SI Appendix for maps and
additional background about the Barnett Shale). BU estimates of
CH4 emissions in the Barnett, based on publically available data,
vary by a factor of 3, exclude some sources, and are partially based
on assumptions that are not locally calibrated and predate shale gas
development (27).
The goals of this work were (i) to construct a custom BU CH4

inventory that accurately represents the entire population of facili-
ties within discrete source regions sampled by TD approaches,
(ii) to quantify emissions from the major facility types in the region
using methods that explicitly account for the contribution of high-
emitters, and (iii) to identify the data collection and analytical el-
ements necessary to reconcile TD and BU approaches.
This paper integrates seven datasets primarily drawn from a

2013 emission measurement campaign in the Barnett region (28)
and supplemented with other recently published data: seven TD
estimates from aircraft CH4 measurements (19) (dataset 1); six
TD estimates from aircraft ethane measurements (29) (dataset
2); a spatially explicit list of all oil and gas infrastructure in the
region created by combining all available data (e.g., production
sites, processing facilities, and compression stations) (27) (dataset
3); BU CH4 measurements of a systematic sample of 186 Barnett
production sites (30) (dataset 4); BU CH4 measurements from a
systematic national sample of 125 compressor stations and pro-
cessing plants (12) (dataset 5); BU CH4 and ethane measurements
of 102 Barnett production sites, compressor stations, and processing
plants that are biased toward high-emitters (31, 32) (dataset 6); and
published EFs (27) (dataset 7), which provide emissions per type of
emitter, for biogenic sources (e.g., landfills and feedlots) and minor
fossil sources that are collectively responsible for <5% of total fossil
emissions (well completions, losses from gathering and transmission
pipelines, and losses during local distribution). BU datasets 4–6 are
based on downwind measurements that characterize facility-wide
emissions.
The primary TD estimates (dataset 1) were obtained from

CH4 concentration data collected by aircraft along transects bor-
dering the core Barnett gas-producing region during seven flights in
March and October 2013. In contrast, previous TD studies have
relied on only one to two flights (2–4). The aircraft also measured
ethane on six of the seven flights, and TD estimates of ethane
emissions (dataset 2) are available for these days (see the SI Ap-
pendix for analysis of the effect of the number of flights on TD
uncertainty and results from one additional flight considered to be
an outlier).
Because CH4 is emitted by both fossil and biogenic sources (e.g.,

wetlands, feedlots, and landfills), TD CH4 measurements estimate
the combined fossil and biogenic flux of a source region. In contrast,
ethane has no biogenic sources and is the second most prevalent
hydrocarbon in natural gas. Smith et al. (29) and Karion et al. (19)
separated fossil from biogenic sources in the Barnett region by
aircraft-based CH4 and ethane sampling downwind of individual
sources. We use their result that 79.5% [73.5–84%; 95% confidence
interval (CI)] of Barnett CH4 emissions comes from fossil sources to
partition fossil CH4 from total CH4 emissions. An alternative, in-
dependent TD fossil CH4 estimate was produced using dataset 2
and reanalysis of dataset 6, which agrees with the estimate reported
below (SI Appendix, Results and Discussion).
Because directly measuring emissions from representative

samples of every CH4 source type in every region is costly, BU
estimates often rely on published EFs combined with infrastructure
counts analogous to dataset 3, known as “activity factors.” In con-
trast, our BU estimates are based on extensive local measurements
of facility-wide emissions from production sites, compressor

stations, and processing plants in datasets 4 and 6, with two ex-
ceptions. First, although dataset 5 is from a national study of
compressor stations and processing plants (12), the installed com-
pression capacity of sites in the Barnett region, based on data
published in ref. 27, is similar to the national sample in ref. 12.
Second, dataset 7 uses published EFs or self-reported data to
characterize the minor fossil sources and biogenic emissions (27).
The systematic sampling schemes behind datasets 4 and 5 were

designed to characterize emissions from a representative distri-
bution of facilities. For example, to produce dataset 4, measured
facilities were distributed approximately evenly throughout the
core of the Barnett production region. However, systematic sam-
pling can also yield relatively few of the infrequent high-emitters
that dominate total emissions (see Results and Discussion and
Methods). The under-sampling of high-emitters is another likely
reason for the gap between published BU and TD estimates,
underscoring the need to characterize the extremes of emission rate
distributions by deliberately targeting high-emitters. To obtain the
relatively large sample of high-emitters in dataset 6, two teams
drove around the Barnett region and estimated the emission rate of
the source of each plume encountered (31, 32). Because high-
emission sources produce plumes that remain above an instrument’s
detection limit over longer distances than low-emission sources, this
method tends to favor identifying high-emitters (SI Appendix).
We used a statistical method to estimate emissions probability

density functions (pdfs) from datasets 4–6, which are then used
to derive EFs (Methods and SI Appendix). Results in the main
text were determined using a statistical estimator that integrates
the systematic samples (datasets 4 and 5) with the samples biased
toward high-emitters (dataset 6), using a power law to estimate
the bias (Methods). Two variations of the statistical estimator
were examined; the first relies only on the systematic samples,
and the second characterizes the high-emitter–biased samples
based on Gaussian plume theory (see the SI Appendix for results
and description of these two variations). Because the three es-
timators produced similar results, we only present results from
the power law estimator in the main body of this paper.
Finally, the new BU estimate is enhanced by updated facility

counts (dataset 3, assembled from diverse public records and re-
mote imagery to locate infrastructure, notably compressor stations)
not clearly identified in available records (27). To most directly
compare with TD estimates, we created separate BU estimates for
each source region corresponding to the seven mass balance flights
(SI Appendix). There is a separate BU estimate for each TD esti-
mate because each flight sampled a somewhat different source re-
gion, and the corresponding BU estimate includes only the facilities
inside that region (see Fig. 1 and the SI Appendix for details about
BU uncertainty). The source regions for the flights differ slightly
from the 25-county Barnett production region (SI Appendix, Fig.
S4). Consequently, to facilitate comparison with previous inven-
tories, we also created a BU estimate that is spatially resolved for
the Barnett 25-county region.

Results and Discussion
Convergence of TD and BU Estimates. The excellent agreement of
the TD and BU estimates shows that it is possible to constrain
regional CH4 emissions relatively tightly with either approach (Fig.
1). The mean difference between the TD and BU estimates for total
CH4 emissions, expressed as a percentage of the average TD esti-
mate is 0.1% ± 21% (95% CI) (SI Appendix); the corresponding
difference for fossil methane is 10% ± 32%, expressed as a per-
centage of the mean TD fossil estimate. This implies that the BU
datasets captured the effect of skewed emissions distributions (Fig.
2) and did not miss any major source of CH4 in the region. Aver-
aging data from multiple flights substantially reduced the CI for the
mean TD estimate of total CH4 emissions from all sources (mean
with 95% CI is 71 ± 12 Mg CH4/h, with a daily range of 41–88 Mg
CH4/h; Fig. 1, left column). We hypothesize that some of the
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residual daily variation in total CH4 emissions was caused by bio-
genic sources (33–35). The agreement also suggests well-designed
TD or BU surveys can characterize emissions with sufficient ac-
curacy to verify overall regional effectiveness of any future reg-
ulation of CH4 emissions.

Methane Emissions Are Significantly Higher than Estimates Based on
Public Inventories. Our spatially resolved BU oil and gas CH4

emission estimate for the 25-county Barnett region is 59 Mg
CH4/h (48–73 Mg CH4/h; 95% CI), with the three main sources
being production sites (53%), compressor stations (31%), and
processing plants (13%).
For context, emissions of 59 Mg CH4/h represent a loss of

1.5% (1.2–1.9%) of total Barnett production (resolved for the
Barnett 25-county region) during the study period, with a value
of ∼$100 million/y (at $200/Mg). Our BU estimate is 1.9 times
the estimated emissions based on the US Environmental Protection

Agency (EPA) Greenhouse Gas Inventory (36), 3.5 times that using
the EPA Greenhouse Gas Reporting Program (37), and 5.5 times
that using the Emissions Database for Global Atmospheric Re-
search (EDGAR, Version 4.2) (38) (SI Appendix). The ratios of
TD/BU reported for other basins using these three BU inventories
show similar ratios (SI Appendix), suggesting that the BU approach
used here could be used elsewhere to effectively characterize CH4
emissions.
Lyon et al.’s (27) BU estimate of total oil and gas emissions for

the 25-county Barnett region (46 Mg CH4/h) is 20% lower than
our BU estimate, with most of the difference attributed to pro-
duction sites (see the SI Appendix for detailed comparison). Be-
cause both BU estimates used dataset 3 to generate the activity
factors, the main cause for the difference is the EFs. In turn, these
EFs differ because of the manner in which the systematic samples
are integrated with the high-emitter–biased samples (fat-tail sites).
The statistical estimator we developed produces a single, charac-
teristic emission distribution representative of each source type,
including the influence of high-emitters, thereby eliminating the
need to assume a probability of fat-tail sites as done by Lyon et al.
Our statistical framework predicts that the fat tail of production
sites has a higher probability than assumed by Lyon et al. (Further
details are in the SI Appendix.)
Using the Technology Warming Potential (TWP) framework

of Alvarez et al. (1), we quantified the increase in cumulative
radiative forcing (a metric indicative of climate damage) attrib-
utable to leakage of Barnett Shale gas. Each percentage of
natural gas lost to the atmosphere before combustion adds
roughly 30% to the 20-y radiative forcing due to the fuel-cycle
CO2 emissions alone (i.e., CO2 emissions from end-use natural
gas combustion plus upstream combustion, venting, and leakage)
or 10–15% on a 100-y time horizon (SI Appendix). Therefore,
CH4 leakage of 1.5% from the Barnett natural gas supply
chain increases the radiative forcing from fuel-cycle CO2
emissions alone by about 50% over a 20-y basis (∼20% on a
100-y basis). The measured Barnett methane leakage is low
enough that gas fired electricity in this region causes less
climate forcing than coal-fired electricity (see the SI Appendix
for details, including effect of CH4 mitigation). By contrast,
use of compressed natural gas sourced in the Barnett instead

Fig. 1. Summary of aircraft-based TD (blue circles) and custom BU (or-
ange triangles) emission estimates with 95% CIs from a 2013 measure-
ment campaign in the Barnett Shale. The first row shows the seven-flight
average, with subsequent rows showing estimates for each individual
flight. The middle column shows estimated CH4 from all sources, aver-
aging 71 ± 12 Mg CH4/h (TD) and 71 ± 7 Mg CH4/h (BU). The right column
shows estimates from fossil sources, averaging 56 ± 10 Mg CH4/h (TD)
and 51 ± 4 Mg CH4/h (BU).

Fig. 2. Methane emissions are dominated at any one time by a few high-emitters. (A) Number of sites, by type, in each decile of cumulative emissions from
production sites, processing plants, and compressor stations in the 25-county Barnett region. These three site types account for over 95% of regional oil and
gas CH4 emissions (SI Appendix). Upper x axis shows the maximum emission rate for each decile. (B) Cumulative percent of emissions (solid lines) and cu-
mulative percent of sites (dotted lines) as a function of proportional loss rate (emissions divided by gas production or throughput) for production sites (Prod),
compressor stations (CS), and processing plants (PP).
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of diesel for freight trucks would cause greater forcing for
several decades (1, 39, 40).
Reported methane emission rates in other natural gas-pro-

ducing basins sometimes differ from our Barnett results (2–4,
21). Differences between basins would be expected, even if es-
timates for all regions were obtained with our methods, because
gas reservoirs vary by age, geologic properties, ease of mainte-
nance (accessibility), and local practice, all of which may affect
emission rates. For example, intermittent activities that can re-
sult in high short-term emissions, such as well completions and
liquid unloadings (clearing the well bore of liquids) (9, 11), are
more common in other basins relative to the Barnett in 2013.
Finally, the long-distance transmission and storage of natural gas
results in a substantial increment of CH4 emissions that needs to
be considered when analyzing the climate implications of natural
gas consumption in regions that are not proximate to a pro-
duction area (ref. 41 and SI Appendix).

Barnett Methane Emissions Are Dominated at Any One Time by a Few
High Emitters. The estimated emission distributions imply that, at
any one time, 2% of facilities in the Barnett region are responsible
for half of the emissions, and 10% are responsible for 90% of
emissions (Fig. 2A). High-emitters are divided roughly equally
among production sites, compressors, and processing plants, but
an individual production site is less likely to be a high-emitter
than is a compressor station or processing plant. Even though a
facility’s emission rate depends only weakly on the total amount
of gas produced or processed, facility-level emissions as a frac-
tion of the total CH4 produced or processed is a more effective
metric than absolute emissions to identify sites with avoidable
emissions (ref. 42 and SI Appendix). For example, our results
indicate that 30% of production sites emit >1% of the natural
gas they produce; these sites account for 70% of production site
emissions (Fig. 2B).
Future work is needed to understand the characteristics that cause

an individual site to be a high-emitter. A variety of avoidable op-
erating conditions could lead to excess emissions at those sites, in-
cluding both persistent and episodic phenomena (12, 42). Our work
identifies facility-level high-emitters as drivers of regional emissions;
documenting the root cause of avoidable operating conditions at a
component level could improve the efficacy of mitigation strategies.
The large number of facilities in the Barnett region cause high-

emitters to always be present, and these high-emitters seem to be
spatially and temporally dynamic. Other studies and infrared
imagery from helicopter flights suggest that hydrocarbon plumes
escaping from facilities in the region often represent malfunctions
or other avoidable conditions, such as a stuck valve or routine
flashing, that could occur at any facility, rather than permanent
design flaws in a few facilities (12, 41, 42). To reduce those
emissions requires operators to quickly find and fix problems that
are always present at the basin scale but that appear to occur at
only a subset of sites at any one time, and move from place to
place over time.

Conclusions
To inform the design of future research on oil and gas CH4
emissions, we summarize several elements that contributed to the

convergence of estimates in the Barnett Shale using independent
TD and BU approaches:

i) Uncertainty in estimates of oil and gas CH4 emissions using
TD approaches can be reduced when replicate mass balance
measurements produce a representative central estimate
and a signature compound such as ethane is used to distin-
guish fossil CH4 from biogenic CH4.

ii) BU estimates require accurate facility counts of all major
sources. A major reason that previous inventories under-
estimated emissions is the omission of numerous facili-
ties (e.g., relatively high-emitting compressor stations in
the Barnett).

iii) EFs require effective characterization of the entire dis-
tribution of sources. Two conditions must be satisfied to
accomplish this: (i) the sampling strategy must capture
the low-probability, high-emitting sources that define the
fat tail of the distribution (10, 12, 26, 41), and (ii) emis-
sions datasets must be integrated in such a way that the
emission distributions accurately capture the magnitude
and frequency of high-emitting sources. Here, we used a
statistical estimator to model the skewed distributions from
the major sources, integrating several measurement data-
sets, and deriving EFs that capture the dominant effect of
high-emitters.

Methods
BU Estimates: Statistical Estimator. We developed a statistical estimator that
integrates the systematic samples (datasets 4 and 5) with the samples biased
toward high-emitters (dataset 6), using a power law to estimate the bias. We
use the statistical estimator to produce emissions pdfs, which were then used
to derive facility-level EFs for production sites, compressor stations, and
processing plants. Additionally, we tested two variations of the statistical
estimator: (i) we use only the systematic samples, and (ii) we integrate the
high-emitter–biased samples using Gaussian plume theory (see the SI Ap-
pendix for results and description of these two variations). Because the three
estimators produced similar results, we report results only from the power
law estimator in the main body of this paper.

A plume of gas emitted from a point source blows downwind and spreads
both in the orthogonal horizontal direction and vertically, which causes the
concentration of the gas to decreasewith increasing downwind distance from
its source until it falls beneath the detection limit of an instrument. This
means that the length of the detectable portion of a plume increases with
emission strength. The length of the detectable portion of the plume also
obviously depends on meteorological conditions.

Now consider driving on a roadwhile sampling the concentration of CH4 or
ethane. Under semiflat terrain conditions (such as the ones present in the
Barnett region), the area “searched” for emissions sources is larger for large
sources than for small because large sources can be detected further
downwind than small sources. We thus write this area as a function of the
emissions strength E: A(E). For a given source strength, one can imagine a
line segment extending upwind from the road and terminating at the dis-
tance that would make the concentration on the road fall to the detection
limit if there were a source of strength E at the end of the line segment. As
the sampling vehicle moves on the road, the upwind line segment will
change in length and direction as meteorological conditions change. Col-
lectively, the area swept by the segment as it moves and changes length and
direction is A(E). This increases with E because the line segments increase in
length with E.

Let q(x) be the lognormal probability density of the natural logarithm of
emissions but biased by the fact that the area sampled grows with the

Table 1. EFs derived from the statistical estimator

Source μ σ EF, kg CH4/h

Production sites −1.79 (−2.13, −1.45) 2.17 (1.96, 2.39) 1.76 (1.27, 2.45)
Compressor stations 3.05 (2.77, 3.32) 1.49 (1.32, 1.67) 64.2 (48.8, 84.4)
Processing plants 4.41 (3.92, 4.91) 1.31 (1.00, 1.62) 195 (121, 315)

The 95% CI appears between parentheses. EF= eμ+
1
2σ

2
.
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emission (see the SI Appendix for detailed discussion about selection of
lognormal distribution for the pdfs):

qðxÞ=
AðxÞ 1ffiffiffiffiffiffi

2π
p

σ
e−

ðx−μÞ2
2σ2

R∞
0
AðxÞ 1ffiffiffiffiffiffi

2π
p

σ
e−

ðv−μÞ2
2σ2 dv

. [1]

The sample of production sites obtained by Lan et al. (31) and Yacovitch et al.
(32) looks remarkably like the systematic sample from Rella et al. (30), except
that it is shifted 3–4 powers of e to the right by the high-emitter bias (Fig.
3B). Note that the Yacovitch et al. and Lan et al. sample appears approxi-
mately normal and that the sample’s variance is close to that of the sys-
tematic sample, despite the very large shift in the mean (Fig. 3B).

What functional form for A(x) would preserve normality, conserve the
variance, and shift the mean? The answer is a power function in the arith-
metic space: A(E) = cEθ, which is an exponential function of x: A(x) = cexθ.
With exponential A(x):

qðxÞ=
cexθ

1ffiffiffiffiffiffi
2π

p
σ
e−

ðx−μÞ2
2σ2

R∞
0
cevθ

1ffiffiffiffiffiffi
2π

p
σ
e−

ðv−μÞ2
2σ2 dv

; [2]

and by completing the square, one can show that this high-emitter–biased
distribution is simply the normal distribution with mean μ+ θσ2:

qðxÞ= 1ffiffiffiffiffiffi
2π

p
σ
e−

ðx−μ−θσ2Þ2
2σ2 . [3]

To recap, if the swept area function A(E) is cEθ, then the high-emitter–biased
samples should be lognormal if the unbiased distribution is lognormal. The
mean of the logs should increase by θσ2, and the variance should stay the
same, just as it appears to in Fig. 3B.

We nowargue that a power law is a physically natural simple choice for the
bias function A(E). In Gaussian dispersion theory, the concentration ϕ at
distance D downwind of a source with emissions rate E along the plume’s
centerline is equal to

ϕ=
EB

WσyðDÞσzðDÞ, [4]

where B is a constant, W is wind speed, σyðDÞ is the SD in the horizontal
direction orthogonal to the wind, and the σzðDÞ is the SD in the vertical (43).
Log–log plots of σyðDÞ and σzðDÞ are usually close to linear (35), and thus the
product σyðDÞσzðDÞ is close to a power function: σy ðDÞσzðDÞ≈ aDb. If ϕ0 is the

concentration detection limit and D*(E) is the maximum distance for de-
tection of a source of strength E, then

ϕ0 =
EB

WaD*ðEÞb
, [5]

which rearranges to D*ðEÞ = a constant times E1/b, which implies that A(E) is
also a power function.

This heuristic argument should be viewed as secondary to the observation
that only a power function for the bias A(E) will transform a normal distri-
bution of the logs into another normal distribution with the same variance
but a different mean. Thus, the data provide a strong empirical argument
for the functional form of A(E), which is also reasonable given the physics.

With A(x) = cexθ and the normal distribution q(x) above, the log likelihood
function for the systematic and high-emitter–biased samples is

ℓ2
�
μ , σ , θ

�
=  
X3
j=1

8><
>:S0j lnΦ

 
x*j − μj

σj

!
−
�
Srj + Sbj

�
lnσj

−
XSrj
i=1

�
xi − μj

�2
2σ2j

+
XSbj
k=1

�
xk − μj − θσ2j

�2
2σ2j

9>=
>;, [6]

where μ and σ are the vectors μ = ðμ1, μ2, μ3Þ and σ = ðσ1, σ2, σ3Þ, Sbj is the sample
size for facility type j in the high-emitter–biased dataset, and k indexes the sites in
the high-emitter–biased datasets. Note that although this log-likelihood function
has separate means and SDs for each type of facility (indexed by j), it has only a
single value of the bias exponent θ. A single θ value is used because the bias is a
function of emissions strength, not the type of facility, whereas the means
and SDs of the emissions pdfs do vary with the type of facility. We estimated
the three means, three SDs, and single bias parameter by maximizing the likeli-
hood function and calculated confidence limits by inverting the information
matrix. Because Lan et al. (31) and Yacovitch et al. (32) used marginally different
Gaussian plume models in their estimation procedures, we also considered a
variant of the above log-likelihood functionwith two separate values of θ, one for
each of the two studies. However, the hypothesis of a single value of θ could not
be rejected by a likelihood ratio test (the log-likelihoodwas improved by only∼1.0
because of the addition of a second θ, and the 0.05 significance threshold is ∼1.9).

The normal densities in Fig. 3 A and B are maximum likelihood estimates.
Notice how well they fit the data for both the systematic and high-emitter–
biased samples. It is also reassuring that the estimated value of θ (∼0.7) is
within a narrow range of values that we expect, given the exponents in the
Gaussian plume literature (44) under the meteorological conditions that
dominated the periods of sampling (relatively stable categories). On the

Fig. 3. Summary of results from the statistical estimator. (A) Systematic sample for production sites from Rella et al. (30). (B) Production sites from the high-
emitter–biased samples of production sites [Lan et al. (31) and Yacovitch et al. (32)]. The red and dotted normal distributions are the fitted pdfs. Notice the
mean shift that preserves the variance. (C) Fitted pdf under the statistical estimator, for each source type. (D) Fitted cumulative distribution function under
the statistical estimator, for each source type.
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other hand, the Gaussian plumes literature also shows that A(E) is not
constant. A(E) changes with stability class and, for non-neutral stability
classes, with distance downwind [because plots of log(σyðDÞσzðDÞÞ vs. log D
are mildly concave down rather than perfectly linear]. These concerns mo-
tivated the variation of integrating the systematic and high-emitter–biased
samples, which produces similar results (SI Appendix).

Fig. 3 C and D show the pdf and cumulative distribution function for each
of the modeled sources. Similarly, Table 1 summarizes the parameters and

EFs derived from the statistical estimator and used to produce the BU
estimate.
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